

Outline

- Introduction
- SciBooNE Experiment
- Preliminary results
- Summary

What's SciBooNE?

- Neutrino experiment at Fermilab (E954)
- Precision measurement of v and \overline{v} -nucleus cross section around 1GeV.
 - Important for accelerator based neutrino oscillation experiments.

SciBooNE Collaboration

- Universitat Autonoma de Barcelona
- University of Cincinnati
- University of Colorado, Boulder
- Columbia University
- •Fermi National Accelerator Laboratory
- High Energy Accelerator Research Organization (KEK)
- •Imperial College London
- Indiana University
- Institute for Cosmic Ray Research (ICRR)
- Kyoto University
- Los Alamos National Laboratory
- Louisiana State University
- Purdue University Calumet
- Universita degli Studi di Roma "La Sapienza and INFN"
- Saint Mary's University of Minnesota
- Tokyo Institute of Technology
- Unversidad de Valencia

5 countries 17 institutions

Spokespeople:

M.O. Wascko (Imperial), T. Nakaya (Kyoto)

Introduction

Next step...

- Discover the last oscillation channel
 - $-\theta_{13}$
- CP violation in the lepton sector (v, \overline{v})
 - δ
- Mass hierarchy
 - The sign of Δm_{23}^2
- Test of the standard v oscillation scenario (U_{MNS})
 - Precise measurements of ν oscillations ($\pm \Delta m_{23}^2$, θ_{23})

Strategy of accelerator v oscillation experiments

Impact of v cross section

v oscillation measurement requires precise knowledge on background.

Impact of v cross section

v oscillation measurement requires precise knowledge on background.

-Background: non-QE; Mainly CC- 1π +

 $\nu+N\rightarrow\mu+\pi+N'$

$CC-1\pi^+$ cross section

Need new measurement of non-QE cross sections

Other v/\overline{v} interactions

• Neutral current π^0 prod.

$$(v+N \rightarrow v+\pi^0+N')$$

 \leftarrow Background for v_e appearance search

- Anti-neutrino interactions
 - No measurement below 1GeV
 - Important for $\overline{\nu}$ oscillation study (CPV) in T2K-II

SciBooNE Experiment

SciBooNE Experiment

(K2K-SciBar detector at FNAL Booster Neutrino Beam line)

- Precision measurement of v & v-bar cross sections at ~1GeV ← Important for T2K and other oscillation experiments
- SciBar:
 - Originally K2K-near detector
 - Shipped to FNAL
- BNB: Intense & low energy
 √ beam
 - Ev good match to T2K v and \overline{v} beam
- MiniBooNE near detector

Booster Neutrino Beam

- 8 GeV protons from Booster
- Protons hit beryllium target (71 cm long, 1 cm diameter) within a magnetic focusing horn and produce mesons
- The mesons decay into neutrinos in 50m decay region
- Neutrinos are observed in SciBooNE (100m)
- $\overline{\nu}$ beam by changing horn polarity

SciBooNE Detectors

SciBooNE detectors

SciBar: Fully active target & tracker

Total mass: 15t, Fiducial: ~10t

14,336 channels; extruded scintillator

Particle ID with dE/dx

EC: EM Calorimeter

Lead+scintillation fibers: 11X₀

Gamma / electron ID

MRD: Muon Range Detector Steel (5cm thick x12) +scintillator μ identification Measure up to 1.2 GeV/c

v events at SciBooNE

v and v CCQE event candidates

NC- $1\pi^0$ event candidate

$$\nu$$
+p \rightarrow ν +p+ π^0

SciBooNE Timeline

- 2005, Summer Collaboration formed
- 2005, Dec Proposal
- 2006, Jul Detectors move to FNAL
- 2006, Sep Groundbreaking
- 2006, Nov EC Assembly
- 2007, Feb SciBar Assembly
- 2007, Mar MRD Assembly
- 2007, Mar Cosmic Ray Data
- 2007, Apr Detector Installation
- 2007, May Commissioning
- 2007, Jun Start data taking (antineutrino Data Run)
- 2007, Oct Neutrino Data Run
- 2008, Apr Antineutrino Data Run
- 2008, Aug Complete data taking

Three years from formation to data taking complete!

Data taking & Data set

- Jun. 2007 Aug. 2008
- 95% data efficiency
- 2.52x10²⁰ POT in total
- neutrino : 0.99x10²⁰ POT
- antineutrino: 1.53x10²⁰ POT

Preliminary results from full neutrino data set are presented

Physics Analysis Preliminary results

Physics Topics

Several analyses are in progress

- Charged Current
 - CC inclusive (v_{μ} flux measurement)
 - CC-QE
 - $(-CC-1\pi^+) \rightarrow important for v_{\mu} disappearance$
 - CC- π^0
 - CC- v_e (v_e flux measurement)
- Neutral Current
 - NC- π^0) \rightarrow important for v_e appearance
 - NC-elastic
- ν_μ disappearance

11 PhD students are working on analyses

Charged Current Charged Pion production

 $CC-1\pi^+$

CC- $1\pi^+$ production

Charged current single charged pion (CC-1π⁺) production

CC-resonant π production

Predominant process

•
$$\nu$$
+p $\rightarrow \mu$ +p+ π +

•
$$\nu$$
+n $\rightarrow \mu$ +n+ π +

CC-coherent π production

 ν interacts with nuclei coherently

$$\nu\text{+}C \to \mu\text{+}C\text{+}\pi\text{+}$$

Signal event signature

2 MIP-like tracks (a muon and a pion)

CC- $1\pi^+$ event selection

Signature of CC event at SciBooNE

Muon = SciBar-MRD matched track

SciBar-MRD match sample:

- CC purity: 93%
- Cosmic ray background: <0.5%

CC sample

SciBar-MRD matched event: ~30k events

Muon kinematics of MRD stopped sample

Reconstructed Ev assuming CC-QE

CC purity: 93%

The sample is used to get neutrino spectrum for v_{μ} disappearance search

MC is normalized to SciBar-MRD matched sample

CC- $1\pi^+$ event selection

two MIP like tracks & CC-QE rejection

Particle ID based on dE/dx

Muon confidence level distribution of 2nd track

CCQE rejection based on $\Delta\theta$ p

 $\Delta\theta p$: Opening angle between observed 2nd track and expected proton track assuming CCQE.

CCQE contamination 20%→13%

CC- $1\pi^+$ selected events

CC-1π⁺ sample Q² distribution

~80% pure $\mu+\pi$ sample CC-1 π^+ fraction in the sample $vp \to \mu p\pi$ 34% $vn \to \mu n\pi$ 11% CC-coherent π 15%

Observed DATA deficit in low Q² region

Separate CC-coherent π from CC-resonant π using its characteristic kinematics

CC coherent π selection

Direction of the pion track

Events with a forward-going Pion track are selected

Entries 1879 prelim selected 100 120 140 160 Pion track angle (degree)

Vertex activity

Low energy proton is identified as a large energy deposit around the vertex

CC coherent π sample Q² distribution

CC-coherent π

Efficiency 13% Purity 40%

* Systematic error on background estimation is not included yet

Observed CC-coherent π sample in SciBooNE contains fewer events than our MC simulation, which is based on the Rein&Sehgal model (2007)

SciBooNE sensitivity to $\sigma(CC\text{-coherent }\pi)/\sigma(CC)$ ratio

SciBooNE sensitivity

 $\sigma(CC\text{-coherent }\pi)/\sigma(CC)\sim0.3x10^{-2}$ (*) (sensitive down to ~10% level of the MC prediction)

Neutral Current Neutral pion production

 $NC-\pi^0$

Signature of NC-π⁰ event at SciBooNE

- No muon = No SciBar track go through MRD
- All tracks contained in SciBar

NC-π⁰ event selection

CC-event

 $CC-\pi 0$ event

- NC-π⁰ event selection
 - Search γ tracks
 - Particle ID -- Reject: μ, π, p
 - Event topology
 - Select two isolated tracks

Particle ID with dE/dx

Particle ID with timing info: Muon identification

- Find out muon track → CC event rejection
- Tag decaying muon (µ→vs+e) with SciBar
 TDC info: hits from muon and electron
- Clear signature of decaying muon.

Event topology

isolated tracks

Rejected 31% of CC events

π^0 reconstruction

Reconstructed invariant mass distribution

- Final selected sample
 - ~850 events
 - NC-π⁰ purity: ~54%
- Clear π^0 mass peak only from π^0 produced events
- 250 300 350 400 450 500 → Cross section measurement

Summary

- SciBooNE measures neutrino and antineutrino cross sections near 1 GeV
 - Essential for future neutrino oscillation experiment
- CC-1π⁺ measurement in SciBooNE
 - Observed fewer events in CC-coherent π sample than prediction
 - Full systematic studies and paper drafting for publication are in progress.
 - Submission to PRD will be next month.
- Many analyses are in progress
 - CCQE, CCπ⁰, NCπ⁰, NCelastic, v_{μ} disappearance, v_{e} measurement etc.
 - Antineutrino measurements
- Results will come soon

Backup

Other distribution in coherent sample

CC-1π, non-QE sample

Comparison in samples

2trk, μ + π , non-QE w/ activity

2trk, $\mu+\pi$, non-QE w/o activity

NC-π⁰ signal & background

 $NC-\pi^0$ candidate

Experimental signature

 2γ from π^0

- · 2 tracks in Fiducial Volume
- Disconnected
- Both tracks are not μ , p

CC-inclusive sample

Neutrino energy spectrum measurement using CC-inclusive sample

93% pure CC-inclusive sample